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Abstract: The CoSn structure type contains large interstitial void spaces that frequently host electropositive
guest atoms, such as rare earth elements. In this stuffing process, an intriguing ordering occurs between
the neighboring void spaces leading to a family of long-period superstructures comprising intergrowths of
the ScFesGes and ScFesGag structure types. This superstucture ordering culminates in incommensurability
in the REFesGes_sGa, systems with RE = Sc, Tb, and Lu. In this work, we derive a 3 + 1D superspace
model encompassing this series of structures and investigate the origins of the structural trends in this
family with electronic structure calculations, at both the LDA-DFT and extended Huickel levels. Using our
3 + 1D model, we refine the structures of four new ErFesGes-—sGas (0 < 6 < 6) phases, two commensurate
and two incommensurate, from powder X-ray diffraction data. The refinement results confirm trends observed
in the Sc-, Th-, and Lu-based series: a gradual lengthening and, eventually, turning of the g-vector as Ge
is progressively exchanged for Ga. These trends, and the incommensurate ordering as a whole, are traced
to a tension between two modes by which the host lattice responds to stuffing atom insertion: (1) an atomic
charge modulation enhancing the anionic character of the cavity walls around the guest atoms, and (2) a
positional modulation expanding the cavities occupied by guest atoms. These two modes direct the stuffing
atom ordering pattern toward opposite ends of the ScFesGes—ScFesGag intergrowth series. The full series
of structures, complex and incommensurate, reflects various degrees of balance between these two factors.

1. Introduction

Stuffing extra atoms into the void spaces of a parent structure
is a common motif in solid state chemistry. Examples in the
intermetallics field alone include the clathrates,'™ filled
skutterudites,®® and stuffed derivatives of the MnsSis- and
BaHg-types.” "> When the filling of these void spaces is only
partial, the possibility of ordered patterns of guest atom inclusion
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arises. So far, superstructures of the host-lattice arising from
stuffing patterns have been observed only sparingly,”'®'*!> but
the effects of such ordering in X-ray diffraction measurements
can be quite weak and could be easily missed, particularly in
the era before area detectors. There are some families of stuffed
compounds, however, where guest atom ordering forms the basis
of an extensive structural chemistry. Vivid instances of this are
transition metal interstitial carbides,'®™'® filled NiAs-type
phases,'® and stuffed versions of the CoSn structure type.?® In
all of these systems, long-period or even incommensurate
structures arise, all based on the simplest of packing principles:
inserting atoms into the empty spaces of a host structure.
Evidently some form of communication between stuffing atoms
directs the formation of these occupation patterns. In this paper,
we will team superspace analysis with electronic structure
calculations to decode this communication in one of these
families, the stuffed variants of the CoSn-type (Figure 1).

In the CoSn-type, an alternation of Sn-centered Co kagomé
nets (green) with Sn honeycomb nets (blue) creates large
hexagonal void spaces (red polyhedron in Figure 1b), which
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Figure 1. The CoSn structure type. (a) View down the c-axis. (b) The
alternation of Sn-centered Co kagomé nets with Sn honeycomb nets creates
hexagonal cavities (red polyhedron), which accommodate guest atoms in
stuffed variants of this structure type.

have been deemed “anomalously large”.?' This void space serves
host to cationic guest atoms in a series of RETg¢E¢ phases (RE
= electropositive metallic elements such as the rare earths, Sc
and Hf; T = Mn, Fe, Co, Ni; E = Ga, Ge, In, Sn).>>*** These
often exhibit intriguing magnetic phenomena such as helimag-
netic ordering®~° and giant magnetoresistance,”’ " but most
impressive is the wondrous structural variety arising in this
family: ordering of the RE atoms creates inclusion patterns
(Table 1), with repeat periods ranging from 2 to 68 CoSn
subcells.?*?*3!-32 Recently, powder diffraction experiments in
the REFeq(Ge/Ga)s (RE = Sc, Tb, Lu) systems also revealed
structurally incommensurate members of this family.?%34
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Table 1. Orthorhombic, Commensurate Intergrowth Structures of
the ScFesGas and ScFegGes Structure Types

structure type CoSn subcells m Nse space group ref
HfFesGees “ 2 0 1 P6/mmm 23
ErFesSng 16 1 4 Amam 31
SCF€5G62,5G33,5 44 3 11 Immm 33
HoFesSng 12 1 3 Immm 31
YFesSng 32 3 8 Amam 31
DyFesSng 20 2 5 Cmmm 31
TbFesSng 8 1 2 Amam 31
TbFesGes sGay s 12 2 3 Cmmm 34
TbFe¢Ge;Gas 68 12 17 Cmmm 34
ScFesGag 4 1 1 Immm 24

“We will also frequently refer to this structure as the ScFesGeg
structure type, due its role as one end-member in the progression of
structures observed in the ScFesGes—5Gay, 0 < 0 < 6 system.

(c)

a)

Figure 2. Local rearrangements in the CoSn structure type upon inclusion
of stuffing atoms. The hexagonal cavity (a) before and (b) after the
incorporation of a guest atom. The insertion of a guest atom forces the
capping atoms at top and bottom of the cavity outward. (c) The capping
atoms penetrate into the neighboring cavities above and below, rendering
the neighboring cavities inaccessible to guest atoms. The filled cavities then
alternate with vacant ones, with the capping atoms bumping into each other
to form dumbbells across the vacant cavities. Co: green. Sn: blue. Guest
atom: large sphere.

The commensurate structures in this family have been
examined in some detail, particularly in a recent review by
Venturini.?’A beautiful scheme of cooperativity in guest atom
incorporation along the c-axis of the CoSn structure type
develops (Figure 2): the inclusion of a guest into one of these
cavities pushes the Sn sites at the top and bottom of the void
space away from the void center (Figure 2b). This relaxation
of the host framework makes the two adjacent void spaces along
the c-axis inaccessible, leading to an alternation of stuffed and
empty cavities along ¢. The unstuffed cavities are occupied by
the two Sn sites pushed together by contacts with the stuffing
atoms in the neighboring cavities to form dumbells (Figure 2c).*
This alternation of stuffing atoms and dumbbells along the c-axis
is adhered to universally across the RETE¢ series.

Where the structural variability enters into the series is in
the occupation patterns formed between neighboring voids along
the a- and b-directions. Two archetypical patterns arise: For
the ScFesGes structure (HfFesGes-type), all columns are strictly

(33) Venturini, G. jisismmtism. 2001, 322, 190-197.
(34) Venturini, G. st 2001, 329, 8-21.
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Figure 3. End-members in the ScFesGes—ScFesGag intergrowth series.
(a) The ScFesGes structure (HfFesGes-type). (b) The ScFesGag structure.
The coordination polyhedra of the Sc atoms are given in red and cyan for
Sc atoms with z coordinates of, respectively, 0 and '/>. (c) In the ScFesGes,
all Sc atoms are at z = 0, 1, etc., creating layers of Sc polyhedra stacked
along c. (d) In the ScFesGas structure, the Sc positions alternate between
7z coordinates of 0 and '/, along the b-axis. RP: the relative position of the
Sc atoms along the c-axis (see text). Intergrowth structures are generated
by stacking blocks of these two structures along the by-direction. For
ScFesGes, baye = b — a (in terms of the primitive hexagonal unit cell); for
ScFesGag, bave = b. Sc: red. Fe: green. Ga/Ge: blue.

in-phase giving rise to entire layers of stuffed or empty
polyhedra (Figure 3a,c). For ScFe¢Gag, every other column is
shifted half a unit cell along the c-axis, giving rise to rows of
internally in-phase arrangements along the a-direction (Figure
3b.d). The other members of the structural series occur through
the intergrowth of these two end-members, in which blocks of
the ScFeeGeg structure are separated by antiphase boundaries
taking the form of the ScFesGag-type (see Figure 4 below). With
the exception of the small number of compounds (ca. five)
adopting the ScNigGes- or LiNigGes-types,?* all of the ordered
stuffed CoSn-type phases can be expressed as one of these
intergrowths.

Over the course of this paper, we will draw out the reasons
for the occurrence of these in-phase ScFesGeg-type blocks and
their termination by ScFesGag-type antiphase boundaries. We
will develop this explanation over the next four sections, sections
2—5. Sections 2 and 3 treat the structures of the incommensurate
members of the series. We begin (section 2) by extending the
ScFesGee—ScFesGag intergrowth scheme to incommensurate
structures, encompassing the whole intergrowth series with a
single 3 + 1D family. Section 3 demonstrates the practical utility

(35) In CoSn-type frameworks containing pnictogens, pnictogen—pnictogen
dumbbells have been observed to spontaneously form, without the
introduction of stuffing atoms. See: (a) Mills, A. M.; Lam, R.; Mar,
A. Can. J. Chem. 1998, 76, 1558—1594; (b) Mills, A. M.; Mar, A. J.
Alloys Compd. 2000, 298, 82-92. This suggests that the added valence
electrons contributed by the electopositive stuffing atoms may promote
dumbbell formation, in parallel with the necessity imposed by atomic
size restraints. This is confirmed by inspection of crystal orbital overlap
population curves, calculated with the extended Hiickel method.

a) TbFesons D) HoFesons

Figure 4. Examples of orthorhombic intergrowths of the ScFesGas and
ScFesGes structure types, with the c-axis relative positions (RP) of the
stuffing atoms given for each structure. (a) The TbFecSne structure. (b)
The HoFeeSng structure. (c) The ErFegSng structure. (d) The DyFesSne
structure. See Figure 3 for color conventions.

of this higher-dimensional approach with the crystal structure
refinements of incommensurate phases in the ErFes(Ge/Ga)s
system from powder X-ray diffraction data. Important structural
clues to the communication between host atoms can be identified
in these structure solutions.

In section 4, we turn our focus to what drives these complex
stuffing patterns. One important clue is the observation of a
gradual shifting of the ordering patterns with incremental
changes to the Ga/Ge ratios in the REFeq(Ge/Ga)s (RE = Sc,
Lu, Tb) systems.”>**** This corresponds to a correlation
between the superstructure and the electron concentration for
these compounds. Such a dependence recalls the phenomena
of Fermi surface nesting and the consequent charge density
waves.>®37 Instead, electronic structure calculations, at both ab
initio and semiempirical levels, will demonstrate that incom-
mensurability in this family derives from a fundamentally
different source: a mutual antagonism between the energetic
factors  stabilizing the two end-members of the
ScFecGes—ScFesGag intergrowth series. The stabilities of the
ScFesGeg- and ScFesGag-types derive, respectively, from elec-
trostatic and steric origins, which show opposite preferences
regarding the simultaneous occupation of neighboring void
spaces. A varying degree of balance in this tension creates the

(36) Wilson, J. A.; Di Salvo, F. J.; Mahajan, S. inssiasims 1974, 32,
882-885.
(37) Canadell, E.; Whangbo, M.-H. kel 1991, 91, 965-1034.
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intergrowth series. In the last major chapter of this paper, section
5, we use this model to explain structural trends within this
family of compounds.

The ordering patterns in the stuffed CoSn-type family have
quite intuitive origins, involving just the notions of tightly
packed atoms repelling each other and cationic charges inducing
enhanced anionic charges in their immediate neighbors (or
alternatively: the shielding of cationic charges by electron
redistributions in a metallic lattice). While the chemical bonding
in intermetallic structures is intricate, the stories behind their
superstructures do not have to be.

2. Superspace Model for the ScFesGes—ScFesGas
Intergrowth Structures

2.1. Commensurate Intergrowth Structures. The discovery
of incommensurate phases in the ScFesGeg—9Gas system makes
a description of the entire ScFecGes—ScFeqGag intergrowth
series as a single 3 + 1 dimensional family appealing. A simple
way to build such a description can be found from a close
examination of the end-members themselves. These structures
were shown in Figure 3. In both structures, hexagonal columns
occur along the c-axis in which RE-filled void spaces alternate
with dumbbell-filled void spaces. As we saw in the introduction,
the major difference between the two structures occurs in the
relative phases of this alternation in neighboring columns. For
the ScFesGeg structure, all the columns have the same phase,
while in the ScFe¢Gag structure, neighboring columns along the
b-direction are out of step. These arrangements of the neighbor-
ing columns can be summarized with a simple notation that
gives the relative position (RP) along the c-axis for each
consecutive column along the b-axis. The ScFesGes structure
follows the sequence ...0,0,0,0..., while ScFecGag follows the
sequence ...0,'/,0,'/5....

A number of intermediate structures, with other sequences,
are known from other systems. Some examples are shown in
Figure 4: in TbFe¢Sne (Amam, Figure 4a), double rows of in-
phase polyhedra are separated by antiphase boundaries to form
a simple superstructure, ..0,0,,'5,0,0,'75, 5.... This can be
extended to HoFesSng (Immm, Figure 4b), where the blocks are
three rows wide (...0,0,0,'/5,','...) and ErFesSng (Amam,
Figure 4c) with blocks four rows wide (...0,0,0,0,'%,'%,',
'/5...). A slightly more complicated structure is exhibited by
DyFesSng (Cmmm, Figure 4d), where blocks three rows wide
alternate with blocks two rows wide.

The generalization of this description to incommensurate
structures is made simple if we exchange the discrete sequence
of 0’s and '/»’s for a periodic step function that alternates back
and forth between the values 0 or /5. This is illustrated in Figure
5a, where we show the ErFesSne structure (...0,0,0,0,'/,'5,
','15...) and plot below it an appropriate RP function. For the
first four steps along the b-axis, the value of the function is 0,
corresponding to no shift along the c-axis. For the next four
steps, the function shifts to !/, and then back to 0. The function
is periodic with a period eight times the distance between
columns along the b-axis, baye. Along the b-axis, then, there
are two periodicities at work: that of the displacement function
(A) and bgye.

This provides a general construction principle for the inter-
growth family. We begin with a basic cell, metrically equivalent
to the ScFesGag unit cell (or the C-centered orthohexagonal
supercell of the hexagonal ScFesGes structure) but without the

8198 J. AM. CHEM. SOC. = VOL. 130, NO. 26, 2008
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Figure 5. Construction of ScFesGes—ScFesGag intergrowth structures,
using a relative position (RP) function to give the ¢ coordinates of the Sc
stuffing atoms as a function of their position along the b-axis. The RP
function is a periodic function, with period 4, and switches between values
of 0 and '/, at every interval of /2. (a) The ErFegSng structure (ng = 4, A
= b, i.e., n; = 1). (b) The DyFesSng structure (ny,, = 5, 1 = b/2, i.e., n) =
2). See Figure 3 for color conventions.

stuffing atom/dumbbell occupation pattern specified. This pattern
is then specified by imposing a RP position function on the
structure.

Through the use of this construction, the full series of
commensurate orthorhombic superstructures can be expressed
using two parameters. The first is the number of b,y repeats
contained in the superstructure unit cell, which we will call n,
i.e. nge = b/byye. The second is the number of RP periods (4
repeats) in the supercell, n;, = b/A.

This is illustrated in Figure 5b for the DyFe¢Sng structure,
with nge. = 5 and n; = 2. ne and n; values for other structures
are tabulated in Table 1.

While these superstructures are most intuitively described by
their real space geometries, the RP periods are usually detected
in reciprocal space, through the inspection of X-ray diffraction
patterns. These diffraction patterns are dominated by main
reflections arising from the underlying basic cell, with satellite
reflections arising from the presence of the antiphase boundaries
imposed by the RP function. The main reflections can be
indexed with the usual 4, k, [ indices, referring to the reciprocal
lattice vector ha* + kbgye + [c*. Indexing the satellite reflections
requires the introduction of a fourth reciprocal space basis
vector, ¢, so that the full pattern is indexed with four indices:
h, k, I, m, which refer to the vector ha* + kbjy. + Ic* + mq.
For the commensurate structures we have looked at so far, the
satellite reflections occur along the b*-direction due to the
antiphase boundaries being perpendicular to baye. These satellites
occur in the diffraction pattern at multiples of q = (0, gy * bave,
0) from the main reflections, where gy is bayve/A. As we can see
from the full list of observed g-vectors in Table 2, the g-vector
often exhibits a slight turning in the a*—bjy. plane. This lowers
the symmetry of the resulting superstructures from orthorhombic
to monoclinic.

2.2. Modeling Intergrowths in Superspace. Notice that the
definitions of ny and ny; in the previous section assume the
existence of a periodic supercell. This breaks down when the
repeat lengths of the RP function and the basic lattice become
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Table 2. Observed g-Vectors in ScFesGes—ScFesGas Intergrowth
Structures, q = Gx * akve + gy * bive?

structure type Iqgl/1bavel Gx qy ref
HfFesGeg 0.000 0 0 23
ErFesSng 0.250 0 n 31
SCF66G62,5G33,5 0.273 0 }/11 33
HoFesSng 0.333 0 A 31
YFesSng 0.375 0 318 31
DyFesSng 0.400 0 %5 31
TbFesSne 0.500 0 ' 31
ScFeGe; 5Gag s 0.569 0.0855 0.5495 33
TbFB(,GC4_25Ga1_75 0.578 00795 0.5615 34
LuFesGe,5Gas s 0.596 0.0880 0.5760 20
TbFesGesGa, 0.601 0.0875 0.5815 34
LuFesGe,Gay 0.660 0.1255 0.6235 20
TbFCsGC3AsGa2,5 0.667 0 2/3 34
TbFesGezGas 0.706 0 2/ 34
ScFe¢GeGas 0.762 0.081 0.7490 33
ScFe¢Gag 1.000 0 1 24

“ For ease in comparison with the ErFes(Ge/Ga)s phases described in
section 3, we have performed a transformation of the published unit
cells for the monoclinic phases: keeping the g-vector direction and
length fixed, we rotated the assignment of a,ye and baye by 60° about the
c-axis, the pseudohexagonal axis of the underlying CoSn-type basic cell.
With this choice of aaye and baye, the gy value is minimized.

irrational with respect to each other; this is exactly the case in
the incommensurate members of the stuffed CoSn-type family.
With the onset of incommensurability in this family, we see
vividly that these two period lengths show a high degree of
independence from each other. A method for treating this
independence explicitly is provided by the superspace formalism
devised for incommensurately modulated structures. In this
method, the x, y, z coordinates of each atom in the basic structure
are mapped to the axes xj, x», and x3 of a 3 + 1D unit cell,
while the RP function is laid out along the fourth axis, x4
(illustrated schematically in Figure 6).

The coordinates within this 3 + 1D unit cell have a
geometrically meaningful relationship to the atomic positions
within the physical crystal. For the benefit of those interested
in this structural family, but not specializing in incommensurate
crystallography, we will briefly outline this relationship. Further
details can be found in a variety of teaching and review
articles.>®3° First, let us stress the distinction between the 3 +
1D lattice and the physical crystal. By “physical crystal,” we
refer to the arrangements of atoms in 3D physical space, as
they occur in the crystallites of our samples. By “3 + 1D lattice,”
we refer to a mathematical construction in 3 + 1D space from
which a model for the atomic positions in physical space can
be generated. For the series of structures described in this paper,
three of the four dimensions of the 3 + 1D lattice describe the
atomic positions within the basic unit cell of the series, while
the fourth dimension gives the deviations from these average
positions created by the relative position (RP) function described
above.

In the physical, 3D, crystal the atoms occur at points with
coordinates x, y, and z. With the introduction of the fourth
dimension in the higher dimensional lattice, these points are
stretched out into lines of the form x;(x4), x2(x4), x3(x4), x4, with
x4 representing the phase of the RP function. The function x;(x4)
describes how the x coordinate of an atom in the physical crystal
varies with changes in the phase of the RP function, x»(x4) the
y coordinate, and x3(x4) the z coordinate. Each (x, x, x3) position

(38) van Smaalen, S. Faiuinttingy 2004, 279, 681-691.
(39) Petiicek, V.; Dusek, M. gonituintadiagy. 2004, 279, 692-700.
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Figure 6. Schematic illustration of the features of the 3 + 1D unit cell for
the ScFesGas—ScFesGeg intergrowth family. (a) The x,—x4 plane (with x;
= x3 = 0). The physical y-axis (gray line) occurs as a cut perpendicular to
the x4-axis. The tilting of the x;-axis away from the y-axis leads to a shift
in x4 (the phase of the RP function) accompanying motions along y, and
thus to the long-range occupation patterns of stuffing atoms and main group
dumbbells in the CoSn-type framework’s hexagonal cavities (bottom of
(a)). Stuffing atom positions: red thick bars. Dumbbell centers: light blue
bars. Atoms on walls of the hexagonal cavities: dark blue lines. (b) The
form the RP function takes in the x3—x4 plane (x; = x, = 0). Stuffing atom
positions (red vertical bars) and dumbbells (pairs of thinner blue vertical
bars) alternate every half a unit cell along both x3 and x4.

along an atom’s line represents a possible position for that atom
in the crystal.

Creation of a 3D crystal from the 3 + 1D lattice proceeds
through taking a slice through the higher-D lattice, cut perpen-
dicular to the x4 axis. The points of this higher-D plane coincide
with the x, y, and z coordinates in the physical crystal. When,
as in the incommensurate cases we have looked at so far, the
RP phase depends only on the y coordinate (q = ¢y * bive),
translations along the x and z directions lead to no change in
the phase of the RP function (given by x4). The corresponding
axes in the higher-D cell, x; and x3, are then perpendicular to
x4 and lie parallel to, respectively, the x and z axes. In other
words, the independence in physical space of x, z, and the RP
function phase appears in the 3 + 1D cell as a perpendicular
relationship between the x; and x4 axes and between the x3 and
x4 axes (see Figure 6b).

For the more troublesome, incommensurate direction of the
physical crystal, y, the situation is a little more involved.
Translations along the y-direction create changes in both the
position in the basic cell (x,) and the phase of the RP function
(x4). This is accomplished through a tilting of the x; axis out of
the cut through the 3 + 1D space which generates the physical
crystal (Figure 6a). Thus if we start with a point in the physical
crystal and make a translation of one unit cell along x,, we move
out of the physical crystal into the abstract higher-dimensional
space. In order to stay in physical space, translations along x;
must be coupled to a compensatory return to the physical crystal
by a translation along xs. This change in x4 accompanying
motion along x, produces the shift in the RP function phase
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seen for translations of b,ye in these structures. The magnitude
of this x4 shift for translating one unit cell along x; is the fraction
of the RP function wavelength traveled by one bay. translation:
bave/A = qy, where q = gy * baye.

With the physical significance of the higher-dimensional
coordinates in hand, we can easily, using our structural
knowledge of the ScFecGas—ScFecGeg intergrowth series, create
a model for the atomic positions within the higher-dimensional
unit cell. We begin by placing all the atoms at fractional
coordinates xj, x», and x3 equal to their fractional coordinates
in the basic cell of the physical crystal. Along x4 these atomic
positions are stretched into straight lines, indicating that at this
point the positions are independent of x4.

Next, we note the major effect that the RP function has on
the structure: this function orders the placement of stuffing atoms
(RE) and main group dumbbells (E—E) into the hexagonal
cavities of the CoSn-type framework. For any given point along
the RP function, an alternation of stuffing atoms and dumbbells
occurs along the z-axis (x3-axis). Figure 6b shows how this is
modeled in the 3 + 1D cell with an x3 vs x4 plot of the structure
passing through the RE atoms and dumbbells (x; = x, = 0).
The RE positions are drawn with thick red lines, and the E
positions, with light-blue lines. For any given value of x4, an
alternation occurs along x3 between RE positions and dumbbell
positions.

In the commensurate phases we examined earlier, we saw
that every half of an RP period the RE/E—E pattern is shifted
by half a unit cell along the z-axis. This appears in the 3 + 1D
cell as discontinuous interchanges of the RE and E—E positions
as we move along x4, with shifts happening every half of a unit
cell along x4. The overall arrangement is a checkered pattern,
in which RE atoms and dumbbells alternate along both x3 and
x4. One feature apparent here is a centering in this pattern: a
(0,0,1/2,1/2) translation leaves the pattern unchanged. This is, in
fact, one of several 3 + 1D centering vectors belonging to the
3 + 1D superspace group symmetry of this family. In section
S1 of the Supporting Information we give a derivation of the
full superspace group symmetry for this family, which is
described by 3 + 1D space groups Xmmm(0f0) and X2/m(a30)
for the cases of, respectively, ¢ = g, * baye and q = ¢, * a3ve
+ gy * bive (also included in section S1 is a translation of this
space group notation for the uninitiated/bewildered).

In the structure refinements to come, this x3—x4 pattern is
realized through the use of occupational modulation functions
on the RE atom and E—E dumbbell positions, in which the RE
position at (x; = 0, x, = 0, x3 = 0) is fully occupied for the x4
range —0.25 < x4 < 0.25 and fully vacant for 0.25 < x4 <
0.75 (this step function in the occupation is known as a crenel
function*®). The dumbbell centered at (x; = 0, x, = 0, x3 = 0)
is complementarily modulated in occupation, with the dumbbell
being fully absent for the x4 range with the RE atom present
(—0.25 = x4 = 0.25) and occupied where the RE atom is absent
(0.25 = x4 < 0.75). The full pattern in the x3—x4 plane is then
created from this through the (0,0,1,0), (0,0,0,1), and
(0,0,/5,'/) translations of the 3 + 1D lattice.

We have now captured with the higher-D model the connec-
tion between the RP phase (x4) and the z coordinates of the RE
atoms and E—E dumbbells. The 3D consequence of this pattern
is seen when we move along the incommensurate direction of
the crystal, y. The physical cut will pass through this x3—x4

(40) Petficek, V.; van der Lee, A.; Evain, M. | 1995.
51, 529-535.
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pattern at varying xs-values as y is traveled, generating the
sequence of RP values of 0 and .

This is pictured in Figure 6a, where we look onto the x,—x4
plane at x3 = 0 and x; = 0. Here the physical y axis (gray line)
runs perpendicular to x4, and the tilting of x, with respect to y
indicates that x4 and x, have become entangled along this
direction of the physical crystal. In this view, the RE atoms
and E—E dumbbell centers share the same x, coordinate, and
their alternation along x4 appears as an alternation of red and
light blue segments within single lines, which occur at every
integer value of x, and intersect the physical y-axis at varying
x4 values. The resulting pattern of RE and E—E dumbbell
occupations is shown schematically at the bottom of Figure 6a.

So far, we have considered only the most drastic of the
structural changes created by the RP function: the placement
of stuffing atoms and dumbbells. In addition to this, small
changes in the surrounding framework might also be expected.
The geometry of a RE-stuffed cavity probably varies a little
from that of a dumbbell filled cavity. These variations in the
framework positions occur in the higher-D cell as small
variations in the atomic positions as a function of x4. These
positional variations can be modeled with a sum of harmonic
functions, the coefficients of which can be introduced as
parameters in crystal structure refinements. Such curves are
visible for the E positions (dark blue lines) in Figure 6a.

Until now we have restricted ourselves to the case of
modulated structures with orthorhombic symmetry. How will
these considerations change for the monoclinic case (when q
= ¢x * Aye T ¢y * bive)? The major change is that the RP
function phase now evolves as we proceed down either the x
or y directions of the crystal. In the higher-D cell, this means
that both x; and x, are tilted out of physical space, and
compensatory shifts along x4 are needed for both if we are to
stay in the physical crystal.

The new structural feature stemming from this is illustrated
in Figure 7. First in Figure 7a, we show a typical orthorhombic
case, that of DyFesSng, and take a new view of the structure
(lower panel of Figure 7a), looking down the c-axis to view
the a—baye plane (to prepare for a turning of the g-vector in the
a*—bgy. plane). From this view, the alternation of regions with
RP values of 0 and '/, is most easily seen in the color-coding
of the polyhedra: regions with RP = 0 appear as bands of red,
with the RP = '/, regions occurring as bands of cyan. These
bands run perpendicular to the b,y.-axis. A monoclinic case,
that of ErFesGes_sGas, O = 3.00 (to be refined below), is shown
in Figure 7b. As before, an alternation of bands in red and cyan
occurs. This time, however, the bands are slanted with respect
to the bye-axis, due to the new dependence of the RP function
phase on the coordinate along the a-axis.

In this section, we have outlined a superspace model for the
ScFesGag—ScFesGeg intergrowth series. The major structural
variation across the series, the allotment of RE stuffing atoms
and E—E dumbbells, is produced from this model through
simple changes in the degrees of tilting of the x; and x, axes
out of the physical crystal. The more subtle features, such as
relaxations within the hexagonal cavities, are then treated as
small deviations from this starting point. In the next section,
we will demonstrate this approach with the structure refinement
of several new phases in the Er—Fe—Ge—Ga system, some of
which are incommensurate.
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Figure 7. Structural effect of a turning of the g-vector in the a*—bjye plane
in the ScFe¢Gag—ScFesGes structural series. (a) In the DyFesSng structure,
with its g-vector parallel to baye, the RP function creates an alternation of
sheets with RP = 0 (red) and RP = '/, (cyan) running perpendicular to
bive. (b) For ErFesGes_sGay, 0 =3.00, the g-vector has a component along
a™ (now ajye, as this axis is now incommensurate). The result is that the
RP = 0 and '/, sheets are now slanted in the azve—baye plane.

3. New Phases in the ErFesGegs_sGa; Series

3.1. Overview of the ErFesGes_sGas Series. In the above
sections, we have surveyed the vast structural variety present
in ternary stuffed CoSn-type frameworks, with compositions
RETEs (RE = rare earth element or other electropositive cation,
T = transition metal element, E = main group element), and
have shown that this variety can be accounted for with a
superspace model for the family. The structural versatility in
this series is enhanced on going to pseudoternary systems by
alloying two main group elements on the E sites. In the
ScFesGeg_sGay series, for instance, the progressive substitution
of Ge with Ga leads to an almost continuous shifting in the
period of the RP function, with the resulting g-vector passing
through incommensurate values. The ability to treat these
incommensurate members of the family, alongside the conven-
tional commensurate ones, is one of the chief advantages of
the superspace treatment. In this section, we will demonstrate
this in reporting the synthesis and crystal structure refinement
of several phases in the Erbium series ErFesGes—sGas, where
high-quality samples were obtainable.

In a survey of the ErFesGes—sGay system, syntheses were
carried out for several values of 0, and the resulting samples
were examined with powder X-ray diffraction. Across the whole
spectrum of nominal Ge/Ga compositions, the powder patterns

showed many commonalities. The patterns were dominated by
strong reflections arising from the pseudohexagonal CoSn-type
basic cells of the phases, with only small variations across the
series. In addition to these, weaker satellite reflections appeared
indicative of ordering in the Er stuffing atom positions. Also
present are some prominent impurity peaks due to Er,O3. While
the basic cell reflections showed only minor variations, changes
in the Ge/Ga composition led to large changes in the satellites,
in both position and, in some cases, peak width. In Table 3, we
present examples of the phases detected in this survey. Over a
large domain at the high Ge end of the series (0.0 < § < ca.
2.8), the satellites can be indexed with a simple commensurate
g-vector indicative of the TbFesSng structure type (n) = 1, ng
=2, g, = mlne = 17,). With increasing Ga content, this gives
way to two monoclinic incommensurate phases at 6 = 3.00
and 0 = 3.25, followed by a two-phase domain at 6 =3.50
(not shown) containing one monoclinic and one orthorhombic
phase. From 6 = 3.75 to 4.25, multiphase regions occur with
broad satellites. Finally at the Ga-rich end of the series, 0 =
4.50, there is a return to commensurability with the simple
ScFesGag structure type (ny = 1, nge = 1, g, = 1).

The shifts in the satellite positions with changes in the Ge/
Ga ratio are gradual enough that the evolution can be followed
by comparison of powder patterns for neighboring values of o.
This is illustrated in Figure 8, where the powder patterns of
four samples are shown over the small 26 interval of about 35°
to 42°, a range over which individual satellite reflections can
be particularly well-resolved. The patterns for 6 = 2.75, 3.0,
3.25, and 4.5 are drawn in, respectively, black, blue, red, and
green. In all of these patterns, the left and right sides of the
figure are bordered with high-intensity peaks, arising from the
basic cell. In between these main reflections, in the range 36°
to 41°, less intense reflections are visible. Large dots trace out
the evolution of one set of satellites, those with the indices
(hk,lm) = (1,1,3,—1) and (1,—1,3,1).

At & = 2.75, the orthorhombic symmetry of the TbFeeSng
structure type leads to an mmm point symmetry of the diffraction
pattern, which in turn makes the (1,1,3,—1) and (1,—1,3,1)
reflections symmetry equivalent. The result is a single peak,
marked by a single black dot. At 6 = 3.00, the symmetry
lowering to monoclinic symmetry is evident by the splitting of
the (1,1,3,—1) and (1,—1,3,1) reflections into slightly lower-
and higher-angle reflections (blue dots), respectively. This
splitting is widened on going to 6 = 3.25 (red dots). At 6 =
4.50, orthorhombic symmetry is restored with the coalescence
of (1,1,3,—1) and (1,—1,3,1) into a single peak.

While the splitting of these two reflections makes it easy to
monitor the breaking and recovery of orthorhombic symmetry,
it obscures how the length of the g-vector changes in the process.
To show the variation in g-vector length, as well as provide a
more visual interpretation of this satellite motion, we give as
an inset in Figure 8 a schematic view of the reciprocal lattice
for these phases. We draw with gray circles the reciprocal lattice
points of the basic cell in the (h, k, [ = 3) layer, or in the 3 +
1D indexation scheme: (h, k, [ = 3, m = 0). These reflections
are all absent due to the [ + m = 2n condition from the
X-centering. Then, with colors matching the powder patterns
in the main figure, we plot out the positions of the first-order
satellites corresponding to the dots in the powder patterns,
(1,1,3,—1) and (1,—1,3,1). For 6 = 2.75, the satellites (black)
are aligned with biye and lie halfway between basic cell
reflections, as expected for the twofold superstructure exhibited
by the TbFesSne-type. Because these two satellites are related
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Table 3. Rietveld Refinement Parameters and Results for ErFesGes_sGa, Samples®?

0 =250 o = 3.00 0 =325 0 = 4.50

basic cell

ave (A) 5.0676(2) 5.0600(3) 5.0582(4) 5.0582(2)

Dave (A) 8.7542(4) 8.7492(5) 8.7490(7) 8.7148(4)

¢ (A) 8.2910(3) 8.3155(3) 8.3311(3) 8.4087(4)

o (deg) 90 90 90 90

£ (deg) 90 90 90 90

y (deg) 90 90.069(4) 90.088(5) 90

V (A% 367.81(4) 368.13(4) 368.68(4) 370.66(4)
3 + 1D space group Xmmm(0/30)000 X2/m(050)00 X2/m(030)00 Xmmm(030)000
q = qu@ave t gybave qg: =0 gx = 0.0920(2) gx = 0.1221(3) =0

q,=0.5 qy = 0.5783(4) qy = 0.6226(4) qy =1

A (A) 17.508 14.582 13.301 8.715
refinement details

R(I > 30) 4.83 4.79 5.58 4.49

R,(I > 30) 3.58 2.65 2.57 2.60

Ry 2.01 1.71 1.71 1.77

“¢ values for the ErFe¢Ges9Gas phases reported in this paper refer to the nominal compositions of syntheses, as opposed to parameters in the
structure refinements. ” An extended version of this table is presented as Table S2 in the Supporting Information.

£=3 layer of réciprocal space
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niens

|
5=4.5

35.0 37.0 39.0 41.0
200°)

Figure 8. X-ray diffraction data of ErFesGes—sGas samples over one 26
window displaying individually discernible satellites. Black, 0 = 2.75; Blue,
0 = 3.0; Red, 0 = 3.25; Green, 0 = 4.5. Circular dots indicate the peaks
arising from the reflections (h.k,[,m) = (1,1,3,—1) and (1,—1,3,1). Inset: a
schematic illustration of the / = 3 layer of the reciprocal lattice provided
for interpretation of the peak positions in the diffraction data. Gray open
circles mark the reciprocal lattice points of the basic cell, i.e. (h, k, | = 3,
m = 0). Circular dots give the positions of the (1,1,3,—1) and (1,—1,3,1)
reflections; these are color-coded to match their corresponding peaks in
the powder patterns below. Thick arrows trace the displacement of the
satellites from their associated main reflections. Portions of circles centered
around (0,0,3,0) are drawn to aid the eye in comparing the distances of the
satellites from the origin, the factor determining the diffraction angle of a
reflection.

by a mirror operation passing through the origin perpendicular
to aze, they are equidistant from the origin. Thus they
correspond to the same d-spacing and diffraction angle and, thus,
contribute to the same peak in the powder diffraction pattern.
We highlight this in the inset by showing that both points lie
on the same circle around the origin, on which all points map
to the same angle in the diffraction pattern.
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As we move to 0 = 3.00 (blue), two changes in the g-vector
are visible in the inset. Most obvious is the turning of the
g-vector out of alignment with bjye in the ajzve—bave plane. In
this process, the (1,1,3,—1) position turns foward the origin,
while the (1,—1,3,1) position turns away from it, breaking the
mirror symmetry connecting the two reflections. They now have
different distances from the origin (as indicated by the two blue
circles). This inequality leads to a visible splitting of these
reflections in the powder pattern. In addition to this turning,
the g-vector undergoes a lengthening relative to the 6 = 2.75
case. The same features occur for the 6 = 3.25 g-vector (red).
Here, the turning is sharper leading to a greater splitting between
(1,1,3,—1) and (1,—1,3,1), and the g-vector is further lengthened.

A sharp change occurs when we move to 0 = 4.50. Here the
g-vector snaps back into axial alignment with baye and lengthens
to the point where it is equal in length to biy.. Thus we have
come to a perfectly commensurate case where steps in reciprocal
space by baye are indistinguishable from translations by the
g-vector. In this case, the (1,1,3,—1) and (1,—1,3,1) positions
now both lie on the basic cell reciprocal lattice point (1,0,3,0).
This position is plotted in the inset with a green dot, which
corresponds to a single position in the diffraction pattern.

While the evolution of the g-vector seems rather discontinu-
ous across this series, several continuous changes can be
discerned across this series (Table 3). In the cell parameters of
the basic cell, increasing Ga content produces a gradual
expansion of ¢ coupled with contractions in aaye and baye. The
net effect is an increase in the volume of the basic cell, as
expected for the substitution of Ge with the larger Ga. There is
also a trend in the length of the RP function repeat, A4, which
shrinks monotonically across the series. In the following, we
will discuss the structures of these phases, as elucidated through
Rietveld refinements.

3.2. Crystal Structures of the ErFesGes—sGas Phases. The
structural refinement of the second phase in Table 3,
ErFesGes;Gas, proved particularly simple and provides a friendly
starting point for discussing how these refinements were made
and the information that can be extracted from them. Let us
start with a short overview of the refinement process. It began
with a preliminary step in which the background correction
parameters, zero-offset, cell parameters, g-vector, and profile
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parameters were optimized using the Le Bail refinement*!
feature of the JANA2000 package.*” In this step, the necessity
of including impurity phases Er,Os; and Fe;3Ges became
apparent (see Table S2 of the Supporting Information).

Once these powder parameters converged and examination
of the Bragg positions and profiles indicated that the peaks were
being well-modeled, the refinement of the ErFesGe;Gas crystal
structure began. As the g-vector for this phase is monoclinic,
we used the superspace group X2/m(030)00 (see section S1 in
the Supporting Information for the derivation of this space group
symmetry). For our starting model, we put Er, Fe, and Ge/Ga
atoms at their respective positions within the basic cell. These
are labeled Erl for the stuffing atom, Fela—Fe2 for the Fe
kagomé layer positions, Gel for the single symmetry-distinct
site on the Ge/Ga honeycomb net, and Ge2 for the Ge/Ga
dumbbell position (details can be found in Table S3 of the
Supporting Information). Also included in the starting model
are the crenel occupational functions on the Erl stuffing atom
and Ge2 dumbbell atom positions. For the Ge/Ga positions, we
simply used a Ge structure factor, as the similarities in electron
count between Ge and Ga make their distinction difficult. From
this starting point, the scale factor and phase volumes were
refined, along with the positions of the atoms within the basic
cell. Refining these parameters alone leads to rather good
R-factors for both main reflections and first-order satellites (main
reflections, R{(I > 30) = 3.05; first-order satellites, R{(I > 30)
= 10.12) as well as for the profile fitting (R,,, = 1.80).

Following this, harmonic positional modulation functions
were gradually added, leading to small improvements in the
R-factors. In recognition of the limitations of our powder data,
we then culled those modulation waves with coefficients not
significantly different from zero. Inclusion of second-order
modulations did not lead to convincing improvements in the
R-factors. In the end, only three atoms were modeled with
positional modulations: the Erl stuffing atom, the Gel honey-
comb, and the Ge2 dumbbell positions. Refinement of the Erl,
Gel, and Ge2 positional modulation wave coefficients brought
modest improvements to the R-factors (main reflections, R(/
> 30) = 2.56; first-order satellites, R;(/ > 30) = 8.81; profile
fit, R,,, = 1.71). More details on the results of the refinement
can be found in Tables S2 and S3 in the Supporting Information.
The experimentally measured intensities are compared to the
calculated ones in Figure 9. While there are some small features
apparent in the difference curve, it is predominantly flat. A
comparison with the Bragg positions and powder pattern reveals
that the biggest features in the difference curve occur at
relatively large diffraction peaks arising from the main reflections.

Having discussed the refinement procedure and reliability of
the results, we can now turn to the structure itself. The g-vector
emerging from the refinement has sizable components along
both the djye- and byye-directions: q = 0.0920a;ye + 0.578bjve.
Thus in the physical crystal the phase of the RP function will
depend on an atom’s position along both the duve- and byye-
axes. Also, the g-vector’s coefficients along both axes are far
from any ratio of small integers, and thus the structure is most
conveniently and convincingly treated as incommensurate. As
such, a comprehensive picture of the structure cannot be made
with a finite 3D model. However, a large sample of the structure

(41) Le Bail, A.; Duroy, H.; Fourquet, J. L. i 1988, 23,
447-452.

(42) Petiicek, V.; Dusek, M.; Palatinus, L. Jana 2000. The Crystal-
lographic Computing System; Institute of Physics: Praha, Czech
Republic, 2000.
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Figure 9. Powder X-ray diffraction data for ErFesGesGas, overlaid with
the calculated pattern from the Rietveld refinement. Vertical bars give the
refined Bragg positions for main reflections (top row) and first-order satellites
(bottom row). Longer bars: reflections from Cu Ka radiation. Shorter bars:
from Cu Ka,. Gray arrows: prominent features due to Er,O3 or Fe;3Geg
impurities. The difference curve is drawn to scale with respect to the
calculated and observed patterns.

provides a general idea of the features it exhibits. In Figure
10b, we draw out a 7baye X Sa,ye region of this structure. As in
Figure 7b, the values of the RP function are represented with
the colors of the Er polyhedra: red for RP = 0, cyan for RP =
/5. The RP = 0 and '/» regions again form bands which are
slightly inclined from the a,-direction. The repeat vector of
the RP function, 4 (white arrow), runs perpendicularly to these
bands (4 is the real-space counterpart to the g-vector; it is parallel
to q, with the magnitude 1/Iql).

The RP function pattern has a close relationship to the
TbFesSne-type structure shown in Figure 10a (exemplified here
by an Er—Fe—Ge—Ga phase discussed further below). This
simpler structure consists of an alternation along the b,y.-axis
of two-polyhedron-thick RP = 0 slabs with RP = '/, slabs of
the same thickness. In ErFesGesGaz (Figure 10b) fragments of
such slabs can be seen, but they are broken up, with the double
columns of RP = 0 or RP = '/, interrupted by slips in the RP
phase diagonal to the a,ve- and byye-axes. For the most part, the
slab fragments are three a,y, repeats long, but shorter ones are
also visible in this view.

A more comprehensive view of the structure, one that is not
limited to local regions of the crystal, can be obtained by
examining the positions of the atoms in the superspace unit cell,
where the structure is periodic. It is particularly informative here
to plot the four-dimensional electron density constructed by
Fourier synthesis using the reflection intensities from the powder
diffraction data and phases calculated from the structure model
(Fops densities). Comparison of this electron density with the
model positions provides a further measure of how consistent
the structural model is with the diffraction data and provides
directly hints of where the model can be improved. The Fops
density maps for the key sections of the 3 + 1D unit cell
discussed earlier (Figure 6) are shown in Figure 11a,b.

Figure 11a illustrates the effect of the RP function phase (xs)
on the placement of the Erl-stuffing atoms and Ge2 dumbbells
along the c-direction. The model positions for these atoms are
drawn with thick red bars and thinner light-blue bars, respec-
tively. The pattern is the same as that we saw earlier in Figure
6: an alternation of Erl and Ge2 dumbbell positions every half
of a unit cell along both x3 and x4. Below these bars, F electron
density contours for the x; = x, = 0 layer are plotted. Regions
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Figure 10. Survey of ErFesGes sGas crystal structures refined in this work: (a) 6 = 2.75, (b) 0 = 3.00, (c) 6 = 3.25, and (d) 6 = 4.50. Red polyhedra
correspond to Er atoms with RP = 0, cyan with RP = U (see Figure 7). For each structure, the basic cell and RP repeat vector, 4, are shown. In each picture,
the A-vector is drawn at the same starting point. Thus the length and direction of 4 for different d-values can be qualitatively compared using the various
types of hexagonal nets arising from the basic cell as references. Note that because the structures in (b) and (c) are incommensurate, such depictions can
provide only local views of the structures, not crystallographically repeating units.

of high electron density occur beneath each of the Erl and Ge2
bars, and the remainder of the map is largely featureless. The
termination of the electron density near the tips of the bars along
x4 supports the crenel nature of the occupational modulations
in this structure. Also reproduced in the contours is the
difference in electron count between the Erl and Ge2 atoms:
many more contour lines have collected under the Erl bars than
under the Ge2 ones.

While the x3—x4 map in Figure 11a shows that the Erl/Ge2
dumbbell alternation has been well-modeled, we need to take
another view to see how the rest of the structure responds to
this pattern. The largest response, that of the Gel atoms, can
be seen in the x,—x4 cross section passing through the Er atoms
(at x; = x3 = 0), as presented in Figure 11b. In this map, the
model’s positions for the Erl atoms, Ge2 dumbbell centers, and
Gel atoms are again drawn with color-coded lines (thick red,
lighter blue, and darker blue, respectively). The Erl and Ge2
positions again alternate along x4, with the Erl bars slightly
tilted, reflecting a slight positional modulation. The Gel
positions occur as smoothly varying harmonic waves rippling
down x4. The contours of the Fops electron density in this layer
(with a summation over a small width in x;, see figure caption)
match these features of the model, with large densities pooled
beneath the Erl positions, no appreciable density at the centers
of the Ge2 dumbbell, and waving streams of density following
the Gel curves.

From this diagram, we can also see how the Gel modulation
is tuned to the Erl atom/Ge2 dumbbell alternation. To do this,
we recall that we go from the 3 + 1D structure to the 3D one
by taking cuts perpendicular to the xs-axis. To see which points
in this x,—x; plane will occur together in the physical crystal,
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we should then draw a line perpendicular to x4; neighboring
atomic positions along such a line are also neighboring in the
3D space. Two such cuts are sketched in with gray dotted lines
in Figure 11b, one for an Erl position and one for a Ge2
position. Both positions are placed between two Gel positions,
which form part of the hexagonal polyhedron housing each
stuffing atom and dumbbell (see Figure 2). The spacing of Gel
positions around the Erl and Ge2 positions are unequal;
undulation of the Gel position serves to shrink the space around
the Ge2 dumbbell centers and expand the space around the Erl
positions. This tendency can be understood from size consid-
erations. If an Er atom requires more space than the meeting
point of two Ge atoms, then just as a belt is loosened or
tightened around wider or thinner waists, respectively, the
hexagons of the Gel honeycomb layers expand around the Er
stuffing atoms and contract around the Ge2 dumbbells.
Figure 11c illustrates the consequences of this Gel modula-
tion in physical space. A single Gel honeycomb layer is drawn
along with the Erl atoms that populate it. The honeycomb layer
is strikingly close to ideal. In order to clearly represent the
deviations in the layer, arrows have been added to indicate the
magnitude and direction for each of the larger displacements
(>0.08 A). The arrow lengths are scaled to be 30 times the
actual deviation. Even if the distance each Gel atom travels
under this modulation is small, the orientations of the arrows
show a clear trend: they point away from the Er-filled hexagons
into empty hexagons, again suggesting that Gel atoms move
to provide more space around the Er atoms. Further support
for this interpretation is provided by the close alignment of the
Gel displacement arrows with the RP repeat vector, 4 (drawn
in green). While the x- and y-coefficients of the Gel harmonic
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Figure 11. Analysis of the refinement results for ErFesGe3Gas. (a) Contour map of the electron density in the x3—x4 plane passing through the Er stuffing
atoms (see Figure 6), calculated by Fourier synthesis using intensities extracted from the diffraction data and phases calculated from the structural model
(Fops map). Note the correspondence in both position and size of the electron density with the model’s positions for the Er (thick, red bars) and Ge2 dumbbell
(thinner, light blue bars) atoms. (b) Fops map for the x,—x4 plane centered on the Er atoms. The electron density is summed over a small thickness in the x;
direction to fully capture the Gel atoms (darker blue) which show a small deviation from x; = 0. No significant electron density is expected in this map at
the Ge2 positions, as this plane cuts between the atoms of the dumbbells, not through the atoms themselves. Dotted lines trace out the local coordination of
one Er and one dumbbell position by Gel atoms along the physical y axis. The Gel position is modulated in response to the Er atom/dumbbell occupation
pattern: as can be seen from the lengths of the dotted lines, the Gel modulation opens space around Erl positions, and contracts around the dumbbells. (c)
The distortions of the Gel honeycomb nets resulting from this modulation. One Gel honeycomb layer is shown, along with the Er stuffing atoms lying in
it (red spheres). For each Gel displacement larger than 0.08 A, the displacement vector is drawn with a gray arrow, with the arrow length equal to 30 times
the displacement. In green is drawn the repeat vector of the RP function, 4.

modulations have not been constrained in any way, they have
converged to values leading to displacements virtually parallel
to the A-vector. This parallel alignment allows the Gel displace-
ments to be normal to the interface between RP = 0 and '/,
regions. This ensures that the motion of one Gel atom to
elongate an Erl—Gel contact does not shorten another Erl —Gel
contact in the process.

In summary, the implementation of the superspace model for
the stuffed CoSn-type series of structures allowed for the
refinement of the incommensurate ErFesGe;Gas phase from
powder X-ray diffraction data. A rather good fit to this data
was provided by a simplistic model in which the Er stuffing
atom and Ge/Ga dumbbell RP function is imposed without any
subsequent relaxation of the surrounding structure (main reflec-
tions, R (I >30) = 3.05; first-order satellites, Ri(I >30) = 10.12;
profile fit, R,,, = 1.80). The addition of positional modulation
parameters allowed the resolution of some small relaxations in
response to the occupation pattern created by the RP function.
Chief among these is a modulation in the Gel honeycomb site
which expands the hexagonal void spaces around the Er stuffing
atoms and contracts the voids around the Ge/Ga dumbbells.
Inclusion of these small modulations leads to correspondingly

small improvements in the R-factors (main reflections, R;(/ >
30) = 2.56; first-order satellites, R;( > 30) = 8.81; profile-fit,
Ry = 1.71).

Aside from the ease of the refinement procedure, two further
advantages of this superspace method become evident in this
analysis. One is the intimate connection between the structural
parameters and the structural interpretation. As each modulation
wave describes a periodic, geometrically meaningful distortion
of the structure, simply stating the amplitudes and geometrical
natures of these waves provides a vivid description of a three-
dimensionally aperiodic crystal. The second advantage is related:
the depiction of the structure with only a small number of
coefficients and average positions allows for great economy in
the number of parameters used in the refinement. In the
refinement of ErFesGe;Gas, only 11 parameters were required
for specifying the atomic positions. As can be seen in the other
ErFecGegs—sGas phases to come, the number of parameters can
be further reduced without significant sacrifices in the quality
of the refinement, as judged from the R-factors or inspection of
Fops maps.

The refinements of the remaining Er—Fe—Ge—Ga phases in
Table 3 proceeded with only small variations on that of the 0
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= 3.0 phase just described (details can be found in section S2
of the Supporting Information). The results of these refinements
are summarized in Tables S2 and S3, and views of the emerging
structures are presented in Figure 10. The full series of structures
adhere to the same structural themes observed for the 0 = 3.0:
a full ordering of the Erl stuffing atoms and Ge2 dumbbell
atoms is detected for each phase. Relaxations in the surrounding
framework accompanied this ordering, with the chief distortion
being relative expansion and contraction of the Gel honeycomb
nets around, respectively, the Erl atoms and Ge2 dumbbells.

3.3. ErFesGes—sGas Structures in Context. The g-vector
shows a complicated progression across the system, with both
its length and direction being functions of d. A sequence of
commensurate and incommensurate, orthorhombic and mono-
clinic structures results. While this sequence seems complex, it
becomes more intuitive when we place it in the context of the
larger family of ScFe¢Ges—ScFesGag intergrowth structures. In
Table 2 we tabulated all of the previously observed intergrowth
structure types, giving for each phase the ¢, and g, components
of its g-vector and the g-vector’s length relative to the bay. basic
cell vector, g, = Iql/Ibiyl. Taking the full range of structures
together, we see that the turning of the ¢g-vector occurs in specific
ranges along the progression between the ScFesGeg (¢ = 0, g,
= 0) and ScFe¢Gag (g = 0, g, = 1) structure types. The range
of g-vector lengths 0 < g, < '/, is populated exclusively by
orthorhombic structures, with g, = 0. This is followed by a
region from g = s up to roughly 2/5, over which a small qx
component appears, indicating the structures are monoclinic.
Between the end of this monoclinic region up to the ScFesGag
end-member, %/5 < grel <= 1, only a few structure types have
been discerned, two orthorhombic and one monoclinic.

The structural progression determined above for the
ErFesGeg—5Gay system fits well into the gl = hto 1 portion
of this scheme. For 6 = 2.75, the phase crystallizes as the
orthorhombic ¢, = 0, ¢, = !/, (TbFegSng) structure type. This
lies directly at the border between the orthorhombic and
monoclinic regions in Table 2. Upon increasing O further, the
length of the g-vector increases, and as expected a switch to
monoclinic structures occurs. At & = 3.00 the g-vector has the
components ¢, = 0.092 and ¢, = 0.578, and moving to 6 =
3.25, the monoclinicity continues with g, = 0.122 and ¢, =
0.622. Moving to higher Ga content, 0 = 3.50 produces a two-
phase sample with nearly commensurate g-vectors for both
phases. One phase is monoclinic with its g-vector very close to
gx = '/s, gy = °I5. The second phase is orthorhombic, with the
g-vector close to g, =0, g, = %/5. The gre1 values of, respectively,
0.661 and 0.667 coincide with the end of the gt = '/» to /3
monoclinic region in Table 2. The 6 = 3.50 two-phase sample
thus straddles the border between the high-g. end of the
monoclinic region and the reemergence of orthorhombic phases.
The 6 = 3.75 to 4.25 range of Ge/Ga compositions yielded
multiphase samples exhibiting broad satellites; this, unfortu-
nately, seems to coincide with the 2l < grer < 1 domain of
Table 2, over which we find a paucity of structure solutions.
Finally at 6 = 4.50, we converge on the ScFesGag end-member.

Having cataloged the geometries of the ErFesGes—sGas phases
and the ScFesGes—ScFesGag intergrowth family as a whole,
the question remains: what is driving the structural preferences
in this series? The relaxation of the Gel honeycombs to
accommodate the occupants of the hexagonal cavities recalls
the atom size factor that has been evoked for these structures.*
In the next section, we will examine the role taken by another
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Figure 12. Non-spin-polarized density of states (DOS) curves, calculated
at the LDA-DFT level, for ScFesGas in three structure types. (a) The
HfFesGes structure type. (b) The ScFesGag structure type. (c) The TbFesSng
structure type. The HfFesGeg and ScFesGag structure types are the end-
members of the intergrowth series discussed in this paper, while the
TbFeeSng structure is the simplest example of these intergrowth structures.
The Fermi energy (Ef) for each compound is given with a dashed line.

factor, the valence electron concentration, through electronic
structure calculations.

4. On the Electronic Structures of ScFesGas—ScFesGeg
Intergrowth Phases

4.1. Electron Count as a Factor in the Structural
Preferences of This Series. So far in this paper, we have
examined in detail the structures of the ScFeqGegs—ScFegGag
intergrowth series of stuffed CoSn-type structures and their
modeling as a 3 + 1D family. We now step beyond structural
description toward an understanding of why this amazing variety
of stuffing atom occupation patterns occurs. The structural
progressions in the REFesGes—sGas (RE = Sc, Lu, Tb, Er)
systems provide one alluring clue: across each series the period
of the RP function, A, shrinks monotonically as, starting from
the Ge-rich side of the series, Ge atoms are replaced gradually
with Ga atoms. Since each Ga atom has one less valence electron
than the Ge atom it replaces, this decrease in A is mirrored by
a change in electron count. This suggests the possibility, as put
forward by Venturini** and discussed above, that there is an
electronic origin behind the structural preferences in this series.

To explore this possibility, we performed LDA-DFT calcula-
tions on a variety of these structures. A theoretical study of
these and related phases is complicated by the emergence of
complex magnetic phenomena,?*-*® with often several magnetic
states being adopted by a single compound depending on the
temperature. While electronic structure calculations have brought
insight to these phenomena in the past,** our central interest is
the factors driving the structural preferences in this series, so
we will begin by ignoring these magnetic states, using para-
magnetic calculations, in which the up-spin and down-spin wave
functions are made equivalent. This will allow us to discern
any electronic effect, aside from magnetic ordering, behind the
formation of this intergrowth series.

The importance of the Sc-occupation pattern to the electronic
structure of these phases can be seen quickly by comparing
density of states (DOS) curves for one composition in several
structure types in the sequence. In Figure 12, we plot the results
for the ScFe¢Gag (0 = 6) composition for three structure types:

(43) Mazet, T.; Tobola, J.; Malaman, B. il 2003, 33, 183—
191.
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the HfFe¢Geg (A = 0, @ = 0), ScFesGag (A = Ibayel, ¢ = bive),
and TbFeSng (A = 2Ibayel, ¢ = '/2bkve) types. These correspond,
respectively, to the high-4 and low-4 end-members of the series
and an intermediate structure.

A first glance at the DOS curves in Figure 12 shows that,
while small variations occur, all three curves show a striking
similarity in shape. In each, the Fermi Energy (Er) lies near
the tip of a sharp peak in the DOS. This peak is part of a larger
dense block of states occurring between ca. —6 and —12 eV.
Compact regions of high DOS like this are characteristic of
rather localized orbitals, such as the 3d orbitals of the Fe. Indeed,
the dominance of the Fe d levels here is confirmed by a look at
the Fe d contribution to the DOS in this region (shaded); this
region corresponds to the Fe d block. For all three structures,
the Fe 3d block is followed at lower energies by a tail that runs
down to ca. —19 eV, consisting mainly of Ga sp states.

From these similarities, we see that the bonding in ScFesGag
is largely unaffected by changes in A. For each value of 4, the
Er lies at a peak in the DOS, and there is very little advantage
for choosing one structure over another at this electron count
or, if we follow a rigid band model, at any electron count. In
fact, calculations on ScFesGes in these same three structure types
(Figure S3 in the Supporting Information) show that the major
effect of substituting Ga with Ge is to raise the Er slightly
relative to this DOS peak. This gives an indication for how the
extra electrons are accommodated on exchanging Ga with Ge
in the ScFesGes—sGas phases: the new electrons are absorbed
by the Fe d block. On passing from ScFe¢Gag to ScFesGeg, six
new electrons are added to the Fe d per formula unit, amounting
to one electron for each Fe atom. These observations hint that
the electron count is largely decoupled from the structural
preferences within this family.

These indications are further verified by a look at magnetic
ordering in these structures. A common element in all these
results is the location of the Ef right in the middle of a dense
region of Fe 3d states. This is a prime opportunity for
magnetism. Indeed, repeated observations of complex magnetic
effects, such as helimagnetic ordering, have been made in even
the simplest of these compounds.>>*® To model such ordering
through LDA-DFT calculations would require large supercells
and would require considerable computational time. However,
these instances of complex magnetic superstructures are low
temperature phenomena, while at high temperatures, the phases
exhibit simpler magnetic ordering patterns, such as simple ferro-
and antiferromagnetism. Fortunately, the conditions for the
simple ordering better approximate those at which these
structures initially crystallized. Thus we performed spin-
polarized calculations with the LDA-DFT method, restricting
ourselves to the primitive unit cell for each structure.

In Figure 13, we show the resulting DOS curves for the
ScFesGag composition in the above-mentioned structure types.
As with the non-spin-polarized results above, the curves show
a stubborn uniformity from structure to structure. For each one,
the sharp DOS peak at the Ep in the non-spin-polarized
calculation has given way to a deep hole in the DOS, will a
small bump at its center. Such openings in the DOS at the Er
are associated with structural stability, and by this criterion, all
three structure types are viable options for ScFesGas.

The similarity of the o-spin DOS curves for all three phases
suggests similarities in their magnetic ordering. For all three,
an enhancement of the -spin electrons occurs at approximately
the Ep, while the o-spins contribute more just below the Ef.
The o-spin electrons then outnumber the [-spin electrons.
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Figure 13. Spin-polarized density of states (DOS) curves, calculated at
the LDA-DFT level, for ScFe¢Gag crystallized in three structure types. (a)
The HfFesGes structure type. (b) The ScFe¢Gas structure type. (c) The
TbFeeSne structure type. The shaded regions show the a-spin contribution
to the DOS, the S-spin contribution then being the remainder. Er: Fermi
energy.

Indeed, the resulting ordering pattern is ferromagnetic with
1.56 to 1.62 unpaired electrons on each Fe atom, depending on
the structure. Calculations with the ScFe¢Ges composition
showed similar results. This indicates that satisfactory electron
configurations are obtainable for all the structures in the
ScFesGeg_sGay series, for the full range of valence electron
counts observed in this series.

From this brief look at the electronic structure of the
ScFeqGag—ScFesGeg intergrowth structures, it appears that the
bonding in these phases is largely unaffected by the presence
of the 4 modulations. Structurally, this amounts to all relative
position patterns of the Sc atoms being permissible in
terms of bonding. This recalls the situation with close-packed
structures, where the introduction of stacking faults or long-
range stacking sequences requires little energy. This confirms
the hypothesis put forward in one of the seminal papers on
ScFesGag—ScFesGeg intergrowth structure types, in which El
Idrissi and co-workers identified five new structure types in
REFesSne compounds, those with RE = Tb, Ho, Er, Dy, and
Y.3! They noted that the structural progression was created with
less than a 2% change in the atomic radius of the stuffing atom
and inferred that the energetic differences must be small. As
further evidence they pointed out that, in several cases, the
superstructure adopted depends on the synthesis conditions. The
YFeeSne and DyFesSng compounds were found to crystallize
in, respectively, two and three different superstructures, depend-
ing on the annealing temperature.

4.2. Modulation of Atomic Charges Mirroring the RP
Function. While the structural preferences in this series are
weak, we are still faced with definite trends. In the ScFeq(Ge/
Ga)s and ErFes(Ge/Ga)s systems, we have already seen the
gradual progressions in the g-vector made by changes in the
Ge/Ga ratio. Another trend in this family is related to RE atomic
sizes. For any given host lattice composition, the larger the RE
element, the more frequent the transitions back and forth
between RP = 0 and RP = '/, regions (shorter 4, larger q).
Take the REFesSns compounds, the first such series to be
structurally characterized.®' In incrementally adjusting the RE
jonic radius from 0.81 A (Sc) to 0.94 A (Gd), q monotonically
increases, passing (at one annealing temperature) through the
values 0, '/sbjve, '/3bive, /sbave, and '/bjve.

The density of states (DOS) analysis provided little help in
understanding such trends. While it offered clues to the
electronic effects stabilizing this family in general, these were
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Figure 14. Graphical view of the relative atomic charges for the Ge/Ga
sites around the Sc-stuffing atoms in the ScFe¢Ges and ScFesGag structure
types. (a) The ScFesGes structure. (b) The ScFesGag structure. Relative
charges are plotted with spheres, with the sphere volume representing the
magnitude of the deviation of that site’s charge from the average Ge/Ga
charge in the structure. The color gives the sign of the deviation: white for
sites that are more anionic than the average, black for sites more cationic.
In both (a) and (b) the results from two levels of theory are shown. Left:
LDA-DFT charges from a Sc—Fe—Ge calculation, extracted using a Bader
Analysis. Right: extended Hiickel relative Mulliken populations. Red
spheres: Sc positions. Green bars: Fe kagomé net atoms. For calibration of
sphere sizes: the largest white spheres and largest black spheres differ in
electron population by 0.56 electrons/atom.

found to be invariant with respect to the g-vector. How, then,
are we to account for these progressions? As this question is
deeply connected to the structures of these phases, let us try
turning from the electrons’ distribution over the energy axis to
their distribution in physical space. We will start with the
simplest, most familiar, measure of the electron distribution:
the charges of the atoms. In the past, the analysis of atomic
charge distributions has brought insight into problems of site
preference (i.e., which element goes to which site in a structure)
in systems ranging from organic molecules to intermetallic
compounds**® and has provided guidance to the description
of complex intermetallic structures.*’ In the following, we will
see that such an analysis can also be used for teasing out the
origins of superstructure ordering.

Upon extracting the atomic charges from our LDA-DFT
nonspin-polarized calculations on the ScFesGes composition
described above, we found, as expected from electron negativity
considerations, that the Sc atoms are largely cationic (charge:
+1.88e for the ScFe¢Ges-type), with the Fe being anionic
(—0.17e, ScFesGes-type) and the Ge, on average, being slightly
anionic (—0.15e, ScFesGes-type). Much more intriguing though
was the appearance of significant redistributions of the atomic
charges upon changes in the placement of the Sc atoms in the
structures. While the Sc and Fe charges remained largely
constant (with ranges of, respectively, 0.03e and 0.09e over the
series of structures calculated), the Ge charges exhibited
profound variations that can be used to account for the structural
trends in this family of compounds.

We present these Ge charge distributions visually in the left
panels of Figure 14a,b for the end-members of this series, the

(44) Longuet-Higgins, H. C.; Rector, C. W.; Platt, J. R. junfsisssssiiis.
1950, /8, 1174-1181.

(45) Gimarc, B. M. it 1983. /05, 1979-1984.

(46) Miller, G. J. NG 1998, 523-536.

(47) Fredrickson, D. C.; Lee, S.; Hoffmann, R. | NN
2007, 46, 1958-1976.
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ScFesGeg- and ScFesGag-structure types. Here, the hexagonal
columns along the c-axis are drawn (cf. Figure 2c). The relative
charges are plotted with white and black spheres: Black spheres
indicate that the corresponding Ge atoms are more cationic than
average, while white spheres mark atoms that are more anionic.
The sphere volumes are proportional to the magnitudes of the
deviations. The red spheres mark the Sc atom positions.

Differences in both the colors and sizes of the relative charge
spheres occur between the ScFesGes- and ScFesGag-types, most
notably in the blue hexagons derived from the Ge honeycomb
layers. In the ScFesGeg structure (Figure 14a), two very different
hexagons occur: those centered by a Sc atom, and those centered
by a dumbbell. The Sc-centered hexagons are dotted with plump
white spheres; these Ge’s are emphatically anionic compared
to an average Ge atom in the structure, with an extra 0.26
electrons/atom. The hexagons with the dumbbells are just as
emphatically cationic (bearing 0.30 fewer electrons/atom than
the average). In the ScFesGag-type, however (Figure 14b), no
such clear separation of anionic and cationic character is seen:
both the Sc-centered and dumbbell-centered hexagons sport
mixtures of relatively anionic and cationic sites, with the overall
sizes of the spheres being smaller than those of the ScFecGes-
type. In contrast to these profound differences, the charges on
the dumbbell Ge atoms remain largely unchanged between these
two structures.

A considerably simpler level of theory, the semiempirical
extended Hiickel (eH) method, gives quite similar results. In
the right panels of Figure 14a,b, we plot the corresponding
relative Ge charges, calculated using a Mulliken population
analysis. While the methods give somewhat differing results
for each structure—the eH method gives sphere sizes that are
in general smaller and makes the dumbbell sites too electron
rich—there is, however, a remarkable agreement between the
methods in the differences seen in the charges of the ScFecGeg
or ScFesGag structure types. Both methods show virtually no
change in the dumbbell sites between the structures. More
impressively, both methods agree qualitatively on the differences
in colors and relative sizes of the spheres in the hexagons. The
eH calculations well reproduce the scrambling of relatively
anionic and cationic character on going from the Ge hexagons
of the ScFesGeg-type to those of the ScFe¢Gas-type. The
applicability of the orbital-based eH method to this problem
shows us that these variations can be understood in terms of
chemical bonding concepts, rather than purely physical ones.

The use of the eH method also allows us to perform numerous
computational experiments. Being an independent-electron
method, the eH calculations can be carried out over a series of
electron counts. Such calculations indicate that these charge
patterns are largely invariant over the range of electron counts
between the compositions ScFesGeg and ScFesGag. The relative
charge patterns are also stable to numerous variations in the
eH parameters. These results are robust enough that we expect
the results presented here to be generalizable to the whole
structural family.

We can come to a simple rationalization of these relative
charge patterns by looking at larger cross sections of the
structures. In Figure 15, the honeycomb layers of the ScFesGes-
and ScFesGas-types are drawn out, with Ge charges relative to
the average of the honeycomb charges from the LDA-DFT
calculations. Since dumbbell Ge’s have a more or less constant
charge, from now on we will leave them out of the averaging
and take the average honeycomb Ge charge as the reference
for the relative charges. The relatively anionic and cationic
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Figure 15. Relative honeycomb charges on the Ge honeycomb sites of
the compound ScFesGeg in the (a) ScFesGes, (b) ScFesGag, and (c) TbFesSng
structure types. The ScFesGes structure has two symmetry-distinct honey-
comb nets, one with every hexagon occupied by a Sc stuffing atom (z =
0), the other without Sc atoms (z = '/,). For the other two structures, only
one type of honeycomb net is present. See caption to Figure 14 for plotting
conventions.

hexagons of the ScFeGeg structure type become extended here
into two symmetry-distinct nets, one consisting purely of white
spheres (at height z = 0), one completely of black (z = '/,). A
simple rationalization for this anionic/cationic divide can be
gleaned from the placement of the Sc atoms (red spheres). As
the RP function is constant throughout the crystal, the placement
of Sc atoms is completely in-phase between neighboring
hexagonal columns of the structure. This leads to an alteration
of honeycombs in which every hexagon is occupied by a Sc
atom with Sc-vacant honeycombs. This alternation of layers
densely occupied by Sc cations with layers void of such cations,
one may reason, prompts a coherent electron transfer between
the two types of honeycombs to electrostatically stabilize the
Sc cations. Thus the Sc-filled Ge honeycombs appear relatively
anionic, with the remaining honeycombs being relatively
cationic.

The situation is quite different for the ScFesGas-type.
Neighboring hexagonal channels along the b,y.-axis are out-of-
phase in their Sc occupations. The result is that all honeycombs
in the crystal are symmetry equivalent, each consisting of rows
of Sc-centered hexagons separated by rows of empty hexagons.
This equivalence means that no net electron transfer can occur
between neighboring layers. Instead, the electrons distribute
themselves within each layer to maximally stabilize the Sc
cations. Two types of Ge atoms can be discerned in the
honeycomb, based on their numbers of Sc neighbors (Figure
15b): those with two Sc neighbors and those with one. Those
with two Sc neighbors experience a greater cationic pull from
the Sc atoms and, thus, appear as relatively anionic compared
to the Ge atoms with a single Sc neighbor.

From these observations, the relative charges of the Ge atoms
seem directly related to their numbers of Sc neighbors. This
tendency is even more clear in the more complex superstruc-
tures. Figure 15c illustrates this for the ScFesGes composition
in the TbFesSng structure type. With n; = 1, ny = 2, a single
type of honeycomb occurs in which Sc-filled and Sc-vacant
bands alternate every two hexagons along byye. Four symmetry-
distinct Ge sites occur in this layer, those with three, two, one,
and zero Sc neighbors. These bear charges that are, respectively,
strongly anionic, weakly anionic, weakly cationic, and strongly
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Figure 16. Relative honeycomb charges for ScFesGes—ScFesGag inter-
growth structures exhibiting large orthorhombic supercells (extended Hiickel
method, Mulliken population analysis). Relative charges are plotted for the
honeycomb layers of the (a) ErFesSng, (b) HoFeeSng, and (c) DyFesSng
structure types. See caption to Figure 14 for conventions on plotting relative
charges.

cationic (relative to the average honeycomb Ge charge). This
creates an almost sinusoidal appearance in the relative charges
along the b,.-axis: they switch from highly anionic at the centers
of the Sc-filled bands to nearly average at the interface between
the Sc-filled and Sc-vacant regions, to relatively cationic at the
centers of the Sc-vacant bands. This wavelike progression occurs
with the same repeat length as that for the RP function, creating
a modulation in the Ge charges in response to the modulation
in Sc atom occupations.

In Figure 16, we extend these observations to larger super-
structures taking advantage of the low computational cost of
the eH method. Figure 16a—c show the progression in relative
charges for three orthorhombic stuffing patterns of increasing
complexity (neglecting the geometrical relaxations within the
honeycomb nets in order to isolate the effect of the stuffing
patterns; including relaxations leads to only small perturbations
in the relative charges). The same transition between compara-
tively anionic and cationic characters on the Ge sites occurs
between regions of Sc occupation and Sc vacancy, respectively.
Here, as these regions become larger, the harmonic character
seen in the charges of the TbFeeSn¢-type is less obvious. Instead,
as we move away from the (RP = 0)/(RP = '/,) interfaces, the
charges quickly stabilize and become uniform. In fact, the visible
deviations from a uniform anionic/cationic division occur only
at the Ge sites closest to the interfaces, the only sites where the
Ge sites have less than three Sc neighbors. The modulation of
the Ge charges in response to the Sc atom RP function closely
approximates the discontinuous nature of that function. The
phases, then, consist electronically of ScFesGeg-type blocks,

J. AM. CHEM. SOC. = VOL. 130, NO. 26, 2008 8209


http://pubs.acs.org/action/showImage?doi=10.1021/ja077380+&iName=master.img-014.jpg&w=231&h=166
http://pubs.acs.org/action/showImage?doi=10.1021/ja077380+&iName=master.img-015.jpg&w=226&h=304

ARTICLES

Fredrickson et al.

which are separated by sharp antiphase boundaries, with only
minor rearrangements of the electron density occurring at these
boundaries.

From these atomic charge distributions we can also gain
insight into the Ga/Ge ordering in the ErFesGee Ga, phases,
where our refinements from X-ray diffraction data provided little
information. The long-tested principle of topological charge
stabilization* shows the way: the Ge, being more electroneg-
ative than Ga, should preferentially segregate to the sites in the
structure which show the highest electron populations in a
reference calculation, where a single element is placed on all
candidate sites. Our model calculations, whether using the
ScFesGeg composition at the LDA-DFT level or a more generic
RETEs composition at the eH level, provide just such reference
calculations. In all cases, the electron-rich main group sites
cluster around the cationic stuffing atoms, and we predict that
the Ge atoms should preferentially occupy these sites. Total
energy calculations provide further confirmation of this: non-
spin-polarized LDA-DFT calculations on ScFesGesGa; crystal-
lizing in the ScFesGee-type indicate that the lowest energy is
achieved for placing Ga in the relatively cationic honeycomb
layers, with no Sc atoms. The energetic costs for moving the
Ga atoms to the dumbbell or Sc-stuffed honeycomb layer are,
respectively, 0.13 and 0.15 eV/Ga atom. This order of Ga site
preferences (empty honeycomb > dumbbell > Sc-stuffed
honeycomb) closely follows the order of electron populations
seen in our LDA-DFT calculations on ScFe¢Geg. These con-
siderations show that Ge/Ga sites in these structures show widely
varying affinities for occupation by relatively electronegative
or electropositive elements. This, alongside entropy consider-
ations, could account for the tendency for Ge and Ga to combine
within the same structure, rather than segregating into separate
Ge- and Ga-rich phases.

5. Tension between Electrostatics and Sterics: The
Basis for Structural Preferences

5.1. Connecting Modulations of Atomic Positions and
Charges to Stability. Our look at the electronic structure of the
ScFesGes—ScFesGag intergrowth series in the previous section
revealed that the RP function has electronic as well as
geometrical consequences: To accommodate the stuffing patterns
of the RE atoms, a redistribution occurs in the honeycomb
electron populations to maximize the anionic character around
these guests. With the strongly cationic character of the RE
stuffing atoms, this accumulation of negative charge certainly
has a stabilizing effect on the structure. The two end-members
of the intergrowth series represent two extrema of this stabiliza-
tion. In the ScFesGeq structure, with its uniform RP value
throughout the crystal structure, all Sc sites are surrounded by
highly anionic honeycomb sites; the electrostatic stabilization
cannot get any better than this. The ScFecGag-type, on the other
hand, gives the worst case: the rapid oscillation of RP = 0 and
s regions means that little difference occurs in the anionic
characters of the Sc-filled and Sc-vacant hexagons of the
honeycomb nets. The other, more complex, superstructures in
this series are intermediate between these limiting cases.

All of this points in one direction: toward the stability of the
ScFesGeg structure. The introduction of an (RP = 0)/(RP = )
alternation into the ScFe¢Ges-type interferes with the structure’s
ability to stabilize the Sc guest atoms by interrupting its careful
concentration of anionic character around them and should then
have a destabilizing effect.
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Figure 17. Schematic diagram of the electrostatics/sterics tension model
for the structural preferences in the ScFesGes—ScFesGag intergrowth series.
Opposing factors stabilize the two end-members. ScFesGeg-type: the
arrangement of the cationic guest atoms into tight-packed layers allows
them to collectively polarize the host framework and achieve a high degree
of Coulombic stability. ScFesGas-type: the maximal staggering of the guest
atoms leads to each filled cavity having several vacant neighbors, enabling
relaxations in the host framework structure to accommodate the large size
of the stuffing atoms. The intergrowth series arises from various degrees
of balance between these two factors. Gray arrows in the middle of the
diagram show how the sizes of the stuffing and main group atoms affect
this balance.

Why, then, does the ScFesGes—ScFesGag intergrowth series
of structures exist? We believe that an essential clue lies in the
relaxations made by the host framework in response to the RE
occupation patterns. As seen in the ErFeq(Ge/Ga)s structure
refinements described in section 3, essentially the only atoms
to relax are the honeycomb positions (Figure 11c). A positional
modulation runs through these atoms affecting most those at
the interface between RE-filled and RE-vacant regions. The
atoms retreat slightly from the RE atoms into the neighboring
RE-vacant hexagons. As we described above, this gives the
appearance that the honeycomb atoms are making room to
accommodate the large size of the RE atom. If that is indeed
the force underlying the honeycomb relaxation, then the
(RP = 0)/(RP = '/,) interface provides stabilization by relieving
strain in the distances around the RE stuffing atoms. The
stabilization from this relaxation will be maximal for the
ScFesGag end-member, where the interfaces are most frequent.

Note that this is exactly opposite from the structural prefer-
ence given by considerations of electrostatics. It seems that
opposing forces are at work in this family of phases. Electrostat-
ics clearly favor the ScFesGes end-member, while steric
repulsion is pushing toward the other end-member, the ScFesGag-
type. Large intergrowths and incommensurate structures are then
desperate attempts at compromise. Figure 17 provides a
schematic overview of this conflict.

Elemental substitutions can shift the balance in this tension.
Consider the ErFes(Ge/Ga)s and ScFeg(Ge/Ga)s systems. On
going from the Ge-rich to the Ga-rich sides of the composition
space, the g-vectors in both systems exhibit a gradual lengthen-
ing. The lengthening of the g-vector in reciprocal space
corresponds in real space to a shrinking of A and a shorter
distance between neighboring (RP = 0)/(RP = '/,) interfaces.
This progression can be understood from the relative sizes of
the Ge and Ga atoms. Upon replacing the smaller Ge with the
larger Ga the steric congestion around the Sc/Er atoms becomes
exasperated. This added steric stress is relieved by an increased
frequency of (RP = 0)/(RP = '/,) antiphase boundaries. Gray
arrows are drawn between the end-members in Figure 17 to
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summarize this trend: for a given RET¢E¢ stoichiometry,
substitutions on the E site with a larger main group element
mean a shrinkage of the ScFesGes-type blocks of the structure,
while substitutions with a smaller main group element lead to
an expansion of these blocks. Varying the size of the RE element
produces the same effect. As we already described above, using
the REFesSng series as an example, increasing the RE cationic
radius drives the structure toward the ScFesGag end of the
structural progression.

We should note these trends with elemental substitution hold
only when the perturbation from the substitution is relatively
small, i.e., where the balance of T—T, T—E, E—E, and other
contacts in defining the size of the hexagonal cavity is not
seriously upset by the change. Small enough perturbations
include the replacement of Ge with Ga, or one RE element with
other RE elements. Predicting the structural variations for more
serious perturbations proves more difficult. For instance, a
disconnect is encountered as we move from the Ge/Ga-based
phases, to the Sn-based ones. ErFesGag adopts the ScFesGag-
type (reserved for the biggest of E atoms). With the larger size
of Sn compared to Ga, we would expect that ErFesSne would
also crystallize in the ScFesGag-type. Instead it forms a structure
much further on in the continuum toward the electrostatically
favored ScFesGes-type (Figure 4c). Evidently, full replacement
of Sn by Ga or vice versa represents too large of a perturbation
for a simple size argument to hold. However, the argument still
proves useful for small substitutions between Sn and Ga. We
will see this in the next section, where we discuss the
ErFesSne—sGay system.

5.2. The Form of the ErFesSns—sGas Phase Diagram. In the
ErFes(Ge/Ga)s and ScFeq(Ge/Ga)s systems we have looked at
so far, the structures for the intermediate Ge/Ga ratios are
intermediate between the end-member phases. With our elec-
trostatics vs sterics model in hand, we can now account for the
structural chemistry in RET6(E/E')¢ systems with less intuitive
structural progressions.**=>° The ErFes(Sn/Ga)g system provides
a particularly pathological example. The Sn-rich end-member,
ErFe¢Sng (Figure 4c), contains (RP = 0)/(RP = '/,) antiphase
boundaries every four hexagonal cavities along the b,y.-direction.
In the Ga-rich end-member, ErFesGas (ScFesGag-type, Figure
3b), the frequency of antiphase boundaries increases to the point
where they occur at a rate of one per hexagonal cavity along
bave. Normally, we would expect that intermediate Sn/Ga
compositions would give rise to intermediate structures, with
the frequency of (RP = 0)/(RP = '/,) interfaces gradually
increasing as Sn is replaced with Ga. Instead, the only additional
ordered structure type observed in the ErFe¢Sne—sGas system
is the ScFesGes-type, in which the (RP = 0)/(RP = '/,) antiphase
boundaries are entirely extinguished!

This ScFeGeg-type domain occurs at compositions near
ErFesSnsGa,. The prevalence of ScFesGes-type phases with
RETE4E) stoichiometries has been explained from the stand-
point of atomic size considerations.**** When the E' element
is smaller than E, the E/E' ratio of 4/2 allows for just the right
balance to build half of the honeycombs entirely from E', with
E occupying the remaining honeycomb and the dumbbell sites.
The E' honeycombs, with their more open hexagons, then are
preferentially occupied by the RE elements. As a result, we
obtain the lamellar RE occupation pattern characteristic of the

(48) Thou-Mouko, H.; Venturini, G. . 2005, 396, 59-63.
(49) Venturini, G. it 2005, 398, 42-47.
(50) Venturini, G. jiiutemm. 2005, 400, 37-42.

ScFesGeg structure type. Examination of the E/E' site ordering,
where it has been studied, beautifully confirms this picture.

Our concept of electrostatics/sterics tension provides further
insight into the structural preferences in the ErFesSne—sGay
system and those similar to it. We simply consider how changes
in the Sn/Ga composition should effect the balance between
these two energetic factors. Starting from the ErFesSne end-
member, increasing the Ga-content leads to a decrease in the
average E atom size. As this relieves the steric strain around
the Er atoms, this tips the scale toward electrostatics, and the
frequency of antiphase boundaries should decrease. This is
consistent with the formation of the ScFesGeg-type phase at the
composition ErFesSnsGa,. Now let us start from the other end
of the Sn/Ga composition. Increasing the Sn-content from the
ErFesGag end-member raises the average E atom size. As this
tips the scale toward sterics, antiphase boundaries should become
more prevalent. Since ErFesGag already adopts the ScFesGag-
type, with the maximal frequency of antiphase boundaries,
substitution with Sn from this end should not lead to any
structural changes.

Notice that, on moving from the Sn-rich and Ga-rich ends,
we encounter incompatible structural progressions. Going from
the Sn-rich end toward intermediate compositions we predict
an enhancement of ScFeqGeg character. From the Ga-rich end,
however, the ScFesGag structure is predicted to hold stable. How
will this be resolved as the two progressions meet near the center
of the diagram? A two-phase region between the ScFesGeg- and
ScFesGag-type phases would provide one solution. Nature found
another way: a domain with no RE/dumbbell ordering (the
YCoeGes structure type).

With this, the electrostatics/sterics tension model has provided
a rationalization for two domains observed for intermediate Sn/
Ga compositions in the ErFesSng—sGas system: the ScFeqGag-
type domain over the range 0.25 < 6 < 2.5 and the YCosGeg-
type one for 2.5 < ¢ < 4.0. Taking together the success of the
model seen here for incremental changes in Sn/Ga compositions
and its failure for a full exchange of Ga for Sn, we see that the
validity of the model for structural predictions is, at this stage,
limited to small perturbations in the average atomic sizes.

5.3. Monoclinicity between q = /b, and q = */3b},.. Thus
far the electrostatics vs sterics model has, in effect, given us a
qualitative partial derivative of the length of the g-vector with
respect to the average size of either the RE atoms or E atoms.
Can this model also provide insight into the direction of the
g-vector, i.e., explain why RET¢E¢ structures sometimes take
on monoclinicly modulated phases? This question is particularly
relevant to the ErFesGeg—sGay phases introduced in this paper,
where two of the four structures solved are monoclinic (Figure
10). The turning of the g-vector is not unique to the ErFeq(Ge/
Ga)g system, however. It also occurs in the analogous Sc-, Lu-,
and Tb-based series. All of these structures (Table 2) show a
departure from the orthorhombic series for monoclinic structures
when the g-vector length relative to bive, grel = Iql/Ibjyel, lies in
the range '/2b%ye.

In search of an explanation for this trend, we again turn to
the relative charges of the honeycomb atoms. In Figure 18, we
trace the evolution of these relative charges, obtained from eH
calculations, over a series of model structures spanning the ',
< gra = 1 region of the ScFesGes—ScFesGas intergrowth
system. We begin, in Figure 18a, with the structure marking
the transition point between the orthorhombic and monoclinic
series (g« =0, ¢, = 1/,). This is the familiar TbFesSng structure
type, with its double columns of RE-filled hexagons alternating
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Figure 18. Structural progression observed in the ErFesGes_sGas and other REFeq(Ge/Ga)s systems monitored with plots of the relative charges of the
honeycomb atoms. Relative honeycomb charges derived from Mulliken population analysis of extended Hiickel results are shown for model structures
exhibiting the g-vectors of (a) the 6 = 2.75, TbFesSne-type phase; (b) a commensurate approximant to the monoclinic structures observed in the 6 = 3.25
and 3.50 samples; (c) a commensurate approximant to the orthorhombic phase detected in the & = 3.50 sample; and (d) the 6 = 4.50, ScFe¢Gae-type
structure. Gray hexagons mark those Er*" cations in contact with at least one highly anionic honeycomb site (honeycomb atoms coordinated on all three
sides by Er cations, see text). Note that continuing the orthorhombic series to longer g-vectors than the 0 = 2.75 structure necessitates the introduction of
single rows of Er cations, as in the bottom of panel (c). These Er cations have no highly anionic honeycomb neighbors. Switching to the monoclinic series
(b) allows for an increase in the g-vector length (corresponding to an increased frequency of (RP = 0)/(RP = '/,) antiphase boundaries), while keeping all
Er cations in contact with highly anionic honeycomb neighbors. In (b) green bars indicate slip-planes by which the turning of the g-vector partially dissolves
the double rows of Er-filled hexagons seen in the 0 = 2.75 structure. See caption to Figure 14 for conventions on the plotting of relative charges.

with double columns of vacant hexagons. As we saw above in
Figure 15c, the relative charges in the honeycomb layer show
a nearly harmonic distribution: highly anionic and cationic
(relative to the average) honeycomb atoms occur at, respectively,
the centers of RE-filled and RE-vacant strips of hexagons, and
a smooth transition runs between these extremes. This distribu-
tion of relative charges is simply related to the numbers of RE
cations coordinating each honeycomb site, with those coordi-
nated on all three sides showing the highest anionic character.
These highly anionic sites form zigzag chains running along
the centers of the RE-filled regions. Every RE cation is
coordinated by three such highly anionic neighbors.

This structure forms a critical point in the intergrowth series:
the existence of these highly anionic sites in the structure
depends on them being coordinated on all sides by RE atoms.
This is afforded by the double-hexagon thickness of the RE-
filled regions. Reducing the spacing between antiphase bound-
aries further (increasing g,) necessitates that some of these
double columns of RE atoms are replaced by single columns.
The electronic effects of introducing these single columns are
shown in Figure 18c, where we plot the relative charges for the
q:=0,¢q9,= 2/5 structure. The z = 0 and z = '/» layers of this
structure are symmetry-distinct, so we draw both of them. In
the z = 0 layer, only double columns of RE atoms occur; the
charge distribution within these columns shows no substantial
changes from those of the TbFesSns-type. The z = '/, layer,
however, contains RE atoms exclusively in single columns. As
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expected, the relative charge patterns around these RE atoms
match closely those of the ScFesGag end-member (Figure 18d).
No highly anionic sites coordinate these z = '/, RE atoms.

Continuing the orthorhombic series to g, > '/ thus represents
a sudden change in the electrostatic stabilization of the
structures: from a structure where all RE atoms have three highly
anionic honeycomb neighbors, we go to structures where an
increasing fraction of the RE atoms have no such neighbors.
At gy = °/5, this fraction is as high as one-third.

Coupling the increase in length of the g-vector with a
monoclinic turning allows for a more gradual reduction of the
electrostatic stabilization of the RE stuffing atoms. As explained
in section 3, the turning of the g-vector in the azye—bavye plane
has the effect of introducing slip-planes into the double columns
of RE atoms in the TbFesSne structure type. Figure 18b
demonstrates how these slip-planes perturb the relative charges
of the honeycomb layer, taking as an example the commensurate
approximate (¢x = '/s, g, = °/3) to the monoclinic phases
observed in the ErFe¢Ges—sGas, 0 = 3.25 and 3.50 samples.
Two slip-planes in this structure are highlighted with green bars.
At each slip, several honeycomb atoms that were originally triply
RE-coordinated in the TbFesSne-type become only doubly
coordinated. However, the spacing of the slips at every two
hexagons along a,y. is sparse enough that substantial anionic
character can still build up between the slips. The result is that
the infinite zigzag chains of highly anionic atoms at g, = 0, g,
= !/, have become truncated to pairs of atoms. While this
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structural change seems rather drastic, every RE atom in the
structure is still in contact with at least one highly anionic site.

In essence, the turning of the g-vector as gy exceeds '/, stems
from a change in the way the structures mediate the balance in
the electrostatics—sterics tension. From g = 0 to '/, electro-
statics gradually relinquished structural control to sterics through
the process of thinning down the ScFesGeg-type blocks. Rather
than continuing this beyond gre; = 1/,, obeisance is paid to sterics
through the introduction of slips into the TbFesSne-type double
columns. Increasing the length of the g-vector over this range
corresponds to a decrease in the spacing between these slips.
This effect can be observed in the ErFesGec—sGas system
(Figure 10). The 0 = 2.75 phase forms the g, = '/» phase.
Upon increasing d, the g-vector begins lengthening and turning.
At 0 = 3.00, with slips occurring at a predominant spacing of
every three steps along the agy-direction. At 0 = 3.25, the
lengthening and turning are more pronounced: the slips now
occur every two steps along aaye.

A new critical point in the ScFesGes—ScFesGag series is
reached at the g, = /s, qy= 5/5 structure (Figure 18b). Increasing
the frequency of slips further forces at least some RE atoms to
be in contact with slip-planes on both sides along the a,y.-axis.
These atoms would have local environments resembling those
of the ScFesGas structure type, without contacts to any highly
anionic sites. At this point, the advantages of the monoclinic
series relative to the orthorhombic one are lost, and the
orthorhombic series can resume. The g, value 0.661 for this
structure matches well with the shift back to the orthorhombic
series seen in Table 2. The two-phase region represented by
the ErFesGeg—sGay, O = 3.50 sample, described in section S2.4
of the Supporting Information, marks this transition back to the
orthorhombic series.

6. Conclusions

A pervasive structural theme links the superstructures formed
in the stuffed CoSn-type phases. With only a couple exceptions,
the structures are built from domains of the ScFesGeg structure
type, in which the stuffing atoms in the CoSn-type framework
seem to attract each other, forming lamellar arrangements. These
domains are terminated by antiphase boundaries which bear the
structural features, locally, of the ScFecGag structure type. The
full possibilities inherent in this scheme constitute the
ScFesGes—ScFeqGag intergrowth series, which describes struc-
tures formed in more than 200 ternary and pseudoternary
systems. In this paper, we have developed—through a program
of superspace analysis, synthesis, structure refinement, and
electronic structure calculations—a unified description of this
structural family and an explanation for the factors driving the
structural preferences.

Starting from the ScFecGeg and ScFecGag end-members, we
developed a superspace model for the intergrowth series. In this
model, a single 3 + 1D unit cell forms the basis for the whole
family. The variation in widths and orientations of the ScFecGeg-
type blocks across the family are handled by simply changing
the cell parameters of this unit cell (and stepping along
supergroup—subgroup relations between the orthorhombic and
monoclinic series). While this method serves as a convenient
way to catalog the commensurate members of this family, its
usefulness is much more evident in the incommensurate phases
of this family, where the lack of 3D periodicity impedes a
comprehensive structural description in physical space.

The superspace model also provides a basis for the structural
refinement of the incommensurate members of the series. We

demonstrated this with the structure solutions of four new phases
in the ErFesGegs—9Gays system from powder X-ray diffraction
data. These refinements vividly showed that the structural
relaxation around the stuffing atoms in these phases is minor.
Aside from the dumbbell formation along the c-axes of these
phases, only one significant positional modulation mode was
detected. This modulation affects the honeycomb networks, the
hexagons of which serve as belts around the stuffing atoms and
dumbbells, creating a slight contraction around the dumbbells
and expansion around the stuffing atoms. This creates the
impression that the stuffing atoms are just a little too big for
the hexagonal cavity to accommodate without stress.

The minuteness of these distortions at the geometrical level
is reflected in the results of electronic structure calculations.
The features of the density of states (DOS) curves appear
unperturbed as we move from one superstructure ordering
pattern to the next. The ability of a phase to form an opening
in the DOS at the Fermi energy through magnetic ordering
remains intact after variations in structure, electron count, and
composition. The rigid form of the DOS in this family allows
for more minor factors to play decisive roles in the structural
trends. The two key players uncovered here are the steric strain
around the stuffing atoms (revealed in the structure refinements)
and an induced polarization of the atomic charges created by
the presence of the highly cationic stuffing atoms.

These results can be weaved into a concise scheme for the
cooperativity between the stuffing of neighboring hexagonal
cavities in the CoSn-type. When a single hexagonal cavity of
this structure is stuffed with an electropositive RE atom, the
stuffing atom sends mixed messages to the neighboring hex-
agonal cavities. First, the stuffing atom’s size distorts the walls
of the cavity, pushing the walls into the spaces of the
neighboring cavities. This, of course, tends to make the
neighboring interstitial spaces unattractive to other stuffing
atoms. This is the dominant effect along the c-axis, along which
the RE/dumbbell alternation occurs. In addition to this steric
signal, the RE sends an attractive signal: its cationic character
polarizes the CoSn-type framework, creating a high electron
density in the cation’s immediate surroundings. This concentra-
tion of negative charge serves as a beacon to other stuffing
atoms. The steric repulsion message alone calls for the formation
of the ScFesGag end-member of the intergrowth series, while
the electrostatic signal by itself directs crystallization in the
ScFesGeg end-member. Varying the relative strengths of the two
signals creates the full intergrowth series.

This provides an explanation for the major structural trends
within the REFeq(Ge/Ga)s systems and other systems where
elemental substitution creates minor perturbations to the hex-
agonal cavity dimensions, including the formation of a mono-
clinic series as the ScFe¢Geg-type blocks become exceedingly
narrow. So far, these considerations have been made in an
entirely qualitative manner. There, however, is the prospect of
developing these ideas in a quantitative way, moving toward
predictions of the structure type a phase will adopt from its
composition.

Tension between two driving forces directing the structure
in opposite directions: what could be a simpler origin of complex
superstructure ordering and even incommensurability? Perhaps
a similar dynamic underlies other systems exhibiting these
phenomena. One particularly intriguing place to look might be
in the ordering of interstitial defects in alloys.
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7. Technical Procedures

Synthesis. The samples ErFeqGes—sGay were prepared from a
mixture of the ternary alloys ErFesGee and ErFesGag previously
synthesized from the elements in an induction furnace. This route
of synthesis avoids the manipulation of small quantities of gallium
which is problematic due to its low melting point. The stoichio-
metric amounts of the ternary compounds were finely ground to
ensure homogeneity and compacted into pellets using a steel die.
The pellet was then put into an alumina tube and sealed in a silica
tube under argon (100 mmHg). The samples were then annealed
for 1 week, at 950 °C for 6 = 2.75 and 4.5 and at 900 °C for 6 =
3.0, 3.25, and 3.5.

Data Collection on Powder Samples. The compounds were
analyzed by X-ray diffraction using a Guinier camera with Co Ko,
radiation. The patterns were scanned with an LS-20 Line Scanner,
and the measured Bragg angles and corresponding interreticular
distances were used to check the crystallographic properties of the
various samples. Estimation of the g-vector components was done
using the graphical method in the reciprocal lattice. These
components were then refined with a least-squares procedure
together with the basic cell parameters. The diffraction intensities
were also recorded on an XPert Pro diffractometer using Cu Ko
radiation for use in Rietveld refinements.

Rietveld Refinements. Rietveld refinements were carried out
using the JANA2000 package.*? For each sample, the powder
profiles were modeled with a single Pseudo-Voigt peak-shape
function, and the background correction was made with a 10-term
Legendre polynomial. The atomic coordinates of the impurity
phases were held fixed, but their unit cell parameters were allowed
to vary while respecting the restrictions of their space group
symmetry. The Pseudo-Voigt peak-shape parameters for the
impurity phases were set equal to those of the major phase. Further
details on the Rietveld refinements can be found in section 3.

Electronic Structure Calculations. Electronic structure calcula-
tions on the HfFesGes, ScFesGag, and TbFesSng structure types were
calculated at the LDA-DFT level using the VASP package.”'™*
The calculations were done with the ultrasoft pseudopotentials
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provided with the package in high-precision mode, corresponding
to an energy cutoff of 297.0 eV for both the Sc—Fe—Ge and
Sc—Fe—Ga systems. Atomic charges were obtained for the
Sc—Fe—Ge system with a Bader charge analysis,”” using the code
of Arnaldsson, Tang, and Henkelman.”®>” Quantum mechanical
calculations were also carried out at the semiempirical level using
the extended Hiickel (eH) method with the YAeHMOP program.>®
The eH parameters were based on those of Sc, Fe, and Ga optimized
by Cerd4 and Soria to more accurate tight-binding calculations.>®
Further details on the calculations at both levels of theory can be
found in section S4 of the Supporting Information.
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